首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5961篇
  免费   1052篇
  国内免费   775篇
化学   4076篇
晶体学   42篇
力学   444篇
综合类   33篇
数学   753篇
物理学   2440篇
  2024年   3篇
  2023年   127篇
  2022年   106篇
  2021年   162篇
  2020年   219篇
  2019年   235篇
  2018年   173篇
  2017年   179篇
  2016年   264篇
  2015年   290篇
  2014年   292篇
  2013年   357篇
  2012年   531篇
  2011年   595篇
  2010年   399篇
  2009年   319篇
  2008年   421篇
  2007年   376篇
  2006年   358篇
  2005年   333篇
  2004年   281篇
  2003年   196篇
  2002年   164篇
  2001年   140篇
  2000年   106篇
  1999年   139篇
  1998年   102篇
  1997年   115篇
  1996年   118篇
  1995年   116篇
  1994年   82篇
  1993年   67篇
  1992年   58篇
  1991年   65篇
  1990年   67篇
  1989年   53篇
  1988年   41篇
  1987年   27篇
  1986年   34篇
  1985年   27篇
  1984年   14篇
  1983年   9篇
  1982年   11篇
  1981年   5篇
  1980年   5篇
  1979年   1篇
  1976年   2篇
  1974年   1篇
  1957年   3篇
排序方式: 共有7788条查询结果,搜索用时 15 毫秒
71.
The discovery of the covalent‐like character of the hydrogen bonding (H‐bonding) system [Science 342 , 611(2013)] has promoted a renewal of our understanding of the electronic and geometric structures of water clusters. In this work, based on density functional theory calculations, we show that the preferential formation of a stable quasiplanar structure of (H2O)n(n = 3–6) is closely related to three kinds of delocalized molecular orbitals (MOs; denoted as MO‐I, II, and III) of water rings. These originate from the 2p lone pair electrons of oxygen (O), the 2p bond electrons of O and the 1s electrons of H and the 2s electrons of O and 1s electrons of H, respectively. To maximize the orbital overlaps of the three MOs, geometric planarization is needed. The contribution of the orbital interaction is more than 30% in all the water rings according to our energy decomposition analysis, highlighting the considerable covalent‐like characters of H‐bonds. © 2015 Wiley Periodicals, Inc.  相似文献   
72.
73.
The surface modification of Ag/Ag2CO3 with Fe(III) ions has been achieved through simply photoreduction‐impregnation method. The obtained products were characterized by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and UV‐vis absorption spectroscopy. Under visible‐light irradiation (γ>420 nm), the Fe(III)/Ag/Ag2CO3 sample displays a higher photocatalytic activity and stability than pure Ag2CO3 and Ag/Ag2CO3 samples for the degradation of methyl orange (MO). The improved photocatalytic activity and stability of this ternary system could be ascribed to the synergetic effect between Ag nanoparticles and Fe(III) nanocluster. The metallic Ag nanoparticles cause an obviously enhanced visible‐light absorption to produce more photogenerated charges, while the Fe(III) works as an active site for the following oxygen reduction to reduce the recombination rate of photogenerated electrons and holes.  相似文献   
74.
75.
76.
We report a self‐propelled Janus silica micromotor as a motion‐based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self‐propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s?1. Biotin‐functionalized Janus micromotors can specifically capture and rapidly transport streptavidin‐modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self‐propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab‐on‐chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.  相似文献   
77.
The mechanism of depolymerization is one of the most essential issues in chemical engineering and materials science. In this work, we investigate the depolymerization reactions of three typical free‐radical poly(alpha‐methylstyrene) tetramers by using first‐principles density functional theory. The calculated results show that these reactions all need to overcome the energy barriers in the range of 0.58 to 0.77 eV, and that breaking the C?C bond at the chain end leads to the dissociation of alpha‐methylstyrene monomers from the polymers. Electronic‐structure analysis indicates that the reactions occur easily at the CR3 unsaturated end, and that the frontier molecular orbitals that participate in the reactions are mainly localized at the unsaturated ends. Meanwhile, spin population analysis presents the unique net spin‐transfer process in free‐radical depolymerization reactions. We hope the current findings can contribute to understanding the free‐radical depolymerization mechanism and help guide future experiments.  相似文献   
78.
Rhizoma Smilacis Glabrae (RSG) is a well‐known herbal medicine with the homology of medicine and food. In this study, simultaneous chemical fingerprint and quantitative analysis of the bioactive flavonoid components of RSG were developed using accelerated solvent extraction and high‐performance liquid chromatography coupled with ion trap tandem mass spectrometry. The operational parameters of accelerated solvent extraction including extraction solvent, extraction temperature, static extraction time, solid‐to‐liquid ratio, and extraction cycles were optimized. Hierarchical cluster analysis, similarity analysis, and principal component analysis were performed to evaluate the similarity and variation of the samples collected from several provinces in China. Subsequently, high‐performance liquid chromatography fingerprints were established for the discrimination of 16 batches of RSG samples, and the major six flavonoids, namely, toxifolin, neoastilbin, astilbin, neoisoastilbin, isoastilbin, and engeletin were then quantitatively determined. The calibration curves for all the six analytes showed good linearity (r2 > 0.999), and the limits of detection and quantification were less than 0.10 and 0.27 μg·mL?1, respectively. Therefore, the proposed extraction and determination methods were proved to be robust and reliable for the quality control of RSG.  相似文献   
79.
Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at –20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research.  相似文献   
80.
A thermally responsive boronate affinity chromatographic material, which showed thermal sensitivity, had been successfully applied for the enrichment and separation of cis‐diol‐containing compounds, and the capture and release process could be facilitated by adjusting the temperature. However, in this system, the pH of the mobile phase must be higher than 9.8, and alkaline media can lead to the degradation of labile compounds; the use of silica beads also limits its use. In this study, thermally responsive boronate affinity chromatographic material, namely poly(N‐isopropylacrylamide‐co‐N‐acryloyl‐3‐aminophenylboronic acid) grafted silica, was successfully prepared by atom transfer radical polymerization. Its structure was confirmed by IR spectroscopy and the graft ratio was 20.8%, determined by thermogravimetric analysis. Furthermore, the capture/release of adenosine, a cis‐diol, was performed from pH 5.0–9.0 and 10–50°C. The elution of adenosine was remarkably retarded at decreased temperatures and adenosine could be captured completely at 10°C at pH values of 5.0–9.0. The enrichment of adenosine could be achieved by simply changing the temperature from 10 to 50°C. Therefore, this material not only improved the stability of the silica, but was also suitable for the capture of oxidation‐sensitive biological analytes. Moreover, it could be used for the enrichment of cis‐diol‐containing compounds in LC with MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号